Information Integration Using Logical Views*

Jeffrey D. Ullman
Stanford University

Abstract. A number of ideas concerning information-integration tools can be thought of as constructing answers to queries using views that represent the capabilities of information sources. We review the formal basis of these techniques, which are closely related to containment algorithms for conjunctive queries and/or Datalog programs. Then we compare the approaches taken by AT&T Labs' “Information Manifold” and the Stanford “Tsimmis” project in these terms.

1 Theoretical Background

Before addressing information-integration issues, let us review some of the basic ideas concerning conjunctive queries, Datalog programs, and their containment. To begin, we use the logical rule notation from [Ull88].

Example 1. The following:

\[p(X, Z) : - a(X, Y) \& a(Y, Z). \]

is a rule that talks about \(a \), an \textit{EDB predicate} (“Extensional DataBase,” or stored relation), and \(p \), an \textit{IDB predicate} (“Intensional DataBase,” or predicate whose relation is constructed by rules). In this and several other examples, it is useful to think of \(a \) as an “arc” predicate defining a graph, while other predicates define certain structures that might exist in the graph. That is, \(a(X, Y) \) means there is an arc from node \(X \) to node \(Y \). In this case, the rule says “\(p(X, Z) \) is true if there is an arc from node \(X \) to node \(Y \) and also an arc from \(Y \) to \(Z \).” That is, \(p \) represents paths of length 2.

In general, there is one atom, the \textit{head}, on the left of the “if” sign, \(-\) and zero of more atoms, called \textit{subgoals}, on the right side (the \textit{body}). The head always has an IDB predicate; the subgoals can have IDB or EDB predicates. Thus, here \(p(X, Z) \) is the head, while \(a(X, Y) \) and \(a(Y, Z) \) are subgoals.

We assume that each variable appearing in the head also appears somewhere in the body. This “safety” requirement assures that when we use a rule, we are not left with undefined variables in the head when we try to infer a fact about the head’s predicate.

We also assume that atoms consist of a predicate and zero or more arguments. An argument can be either a variable or a constant. However, we exclude function symbols from arguments.

*This work was supported by NSF grant IRI-96-31952, ARO grant DAAH04-95-1-0192, and Air Force contract F:33615-93-1-1339.
1.1 Conjunctive Queries

A *conjunctive query* (CQ) is a rule with subgoals that are assumed to have EDB predicates. A CQ is *applied* to the EDB relations by considering all possible substitutions of values for the variables in the body. If a substitution makes all the subgoals true, then the same substitution, applied to the head, is an inferred fact about the head’s predicate.

Example 2. Consider Example 1, whose rule is a CQ. If $a(X, Y)$ is true exactly when there is an arc $X \rightarrow Y$ in a graph G, then a substitution for X, Y, and Z will make both subgoals true when there are arcs $X \rightarrow Y \rightarrow Z$. Thus, $p(X, Z)$ will be inferred exactly when there is a path of length 2 from X to Z in G.

A crucial question about CQ’s is whether one is *contained* in another. If Q_1 and Q_2 are CQ’s, we say $Q_1 \subseteq Q_2$ if for all databases (truth assignments to the EDB predicates) D, the result of applying Q_1 to D [written $Q_1(D)$] is a subset of $Q_2(D)$. Two CQ’s are *equivalent* if and only if each is contained in the other. It turns out that in almost all cases, the only approach known for testing equivalence is by testing containment in both directions. Moreover, in information-integration applications, containment appears to be more fundamental than equivalence, so from here we shall concentrate on the containment test.

Conjunctive queries and their containment were first studied by Chandra and Merlin ([CM77]). Here, we shall give another test, following the approach of [R*89], because this test extends more naturally to the generalizations of the CQ-containment problem that we shall discuss. To test whether $Q_1 \subseteq Q_2$:
1. freeze the body of Q_1 by turning each of its subgoals into facts in the database. That is, replace each variable in the body by a distinct constant, and treat the resulting subgoals as the only tuples in the database.
2. Apply Q_2 to this *canonical* database.
3. If the frozen head of Q_1 is derived by Q_2, then $Q_1 \subseteq Q_2$. Otherwise, not; in fact the canonical database is a counterexample to the containment, since surely Q_1 derives its own frozen head from this database.

Example 3. Consider the following two CQ’s:

$$Q_1: p(X, Z) :- a(X, Y) \land a(Y, Z).$$
$$Q_2: p(X, Z) :- a(X, U) \land a(V, Z).$$

Informally, Q_1 looks for paths of length 2, while Q_2 looks only for nodes X and Z such that X has an arc out to somewhere, and Z has an arc in from somewhere. Intuitively, we expect, $Q_1 \subseteq Q_2$, and that is indeed the case.

In this and other examples, we shall use integers starting at 0 as the constants that “freeze” the CQ, although obviously the choice of constants is irrelevant. Thus, the canonical database D constructed from Q_1 consists of the two tuples $a(0, 1)$ and $a(1, 2)$ and nothing else. The frozen head of Q_1 is $p(0, 2)$.

If we apply Q_2 to D, the substitution $X \rightarrow 0$, $U \rightarrow 1$, $V \rightarrow 1$, and $Z \rightarrow 2$ yields $p(0, 2)$ in the head of Q_2. Since this fact is the frozen head of Q_1, we have verified $Q_1 \subseteq Q_2$.
Incidentally, for this containment test and the more general tests of following
subsections, the argument that it works is, in brief:
– If the test is negative, then the constructed database is a counterexample to
the containment.
– If the test is positive, then there is an implied homomorphism \(\mu \) from the
variables of \(Q_2 \) to the variables of \(Q_1 \). We obtain \(\mu \) by seeing what constant
each variable \(X \) of \(Q_2 \) was mapped to in the successful application of \(Q_2 \)
to the canonical database. \(\mu(X) \) is the variable of \(Q_1 \) that corresponds to
this constant. If we now apply \(Q_1 \) to any database \(D \) and yield a particular
fact for the head, let the homomorphism from the variables of \(Q_1 \) to the
database symbols that we use in this application be \(\nu \). Then \(\mu \) followed by \(\nu \)
is a homomorphism from the variables of \(Q_2 \) to the database symbols that
shows how \(Q_2 \) will yield the same head fact. This argument proves \(Q_1 \subseteq Q_2 \).

Containment of CQ’s is NP-complete ([CM77]), although [Sar91] shows that
in the common case where no predicate appears more than twice in the body,
then there is a linear-time algorithm for containment.

1.2 CQ’s With Negation

An important extension of CQ’s is to allow negated subgoals in the body. The
effect of applying a CQ to a database is as before, but now when we make a
substitution of constants for variables the atoms in the negated subgoals must
be false, rather than true (i.e., the negated subgoal itself must be true).

Now, the containment test is slightly more complex; it is complete for the class
\(\Pi^p_2 \), problems that can be expressed as \(\{ w \mid (\forall x) (\exists y) \phi(w, x, y) \} \), where strings \(x \)
and \(y \) are of length bounded by a polynomial function of the length of \(w \), and \(\phi \)
is a function that can be computed in polynomial time. This test, due to Levy
and Sagiv ([LS93]), involves exploring an exponential number of “canonical”
databases, any one of which can provide a counterexample to the containment.
Suppose we wish to test \(Q_1 \subseteq Q_2 \). We do the following:

1. Consider each substitution of constants for variables in the body of \(Q_1 \),
allowing the same constant to be substituted for two or more variables.

More precisely, consider all partitions of the variables of \(Q_1 \) and assign for
each block of the partition a unique constant. Thus, we obtain a number
of canonical databases \(D_1, D_2, \ldots, D_k \), where \(k \) is the number of partitions
of integer \(n \), and \(n \) is the number of variables in the body of \(Q_1 \). Each \(D_i \)
consists of the frozen positive subgoals of \(Q_1 \) only, not the negated subgoals.

2. For each \(D_i \) consider whether \(D_i \) makes all the subgoals of \(Q_1 \) true. Note
that because the atom in a negated subgoal may happen to be in \(D_i \), it is
possible that \(D_i \) makes the body of \(Q_1 \) false.

3. For those \(D_i \) that make the body of \(Q_1 \) true, test whether any \(Q_2(D'_i) \)
includes the frozen head of \(Q_1 \), where \(D'_i \) is any database that is a superset
of \(D_i \) formed by adding other tuples that use the same set of symbols as \(D_i \).
However, \(D'_i \) may not include any tuple that is a frozen negative subgoal of
\(Q_1 \). When determining what the frozen head of \(Q_1 \) is, we make the same
substitution of constants for variables that yielded \(D_i \).
4. If every \(D_i \) either makes the body of \(Q_1 \) false or yields the frozen head of \(Q_1 \) when \(Q_2 \) is applied, then \(Q_1 \subseteq Q_2 \). Otherwise, not.

Example 4. Let us consider the following two conjunctive queries:

\[
Q_1: p(X, Z) \iff a(X, Y) \land a(Y, Z) \land \text{NOT } a(X, Z).
\]
\[
Q_2: p(A, C) \iff a(A, B) \land a(B, C) \land \text{NOT } a(A, D).
\]

Intuitively, \(Q_1 \) looks for paths of length 2 that are not “short-circuited” by a single arc from beginning to end. \(Q_2 \) looks for paths of length 2 that start from a node \(A \) that is not a “universal source”; i.e., there is at least one node \(D \) not reachable from \(A \) by an arc.

To show \(Q_1 \subseteq Q_2 \) we need to consider all partitions of \(\{X, Y, Z\} \). There are five of them: one that keeps all three variables separate, one that groups them all, and three that group one pair of variables. The table in Fig. 1 shows the five cases and their outcomes.

<table>
<thead>
<tr>
<th>Partition</th>
<th>Canonical Database</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) ({X} {Y} {Z})</td>
<td>({a(0, 1), a(1, 2)})</td>
<td>both yield head (p(0, 2))</td>
</tr>
<tr>
<td>2) ({X, Y} {Z})</td>
<td>({a(0, 0), a(0, 1)})</td>
<td>(Q_1) body false</td>
</tr>
<tr>
<td>3) ({X} {Y, Z})</td>
<td>({a(0, 1), a(1, 1)})</td>
<td>(Q_1) body false</td>
</tr>
<tr>
<td>4) ({X, Z} {Y})</td>
<td>({a(0, 1), a(1, 0)})</td>
<td>both yield head (p(0, 0))</td>
</tr>
<tr>
<td>5) ({X, Y})</td>
<td>({a(0, 0)})</td>
<td>(Q_1) body false</td>
</tr>
</tbody>
</table>

Fig. 1. The five canonical databases and their outcomes

For instance, in case (1), where all three variables are distinct, and we have arbitrarily chosen the constants 0, 1, and 2 for \(X, Y, \) and \(Z \), respectively, the canonical database \(D_1 \) is the two positive subgoals, frozen to be \(a(0, 1) \) and \(a(1, 2) \). The frozen negative subgoal \text{NOT } a(0, 2)\ is true in this case, since \(a(0, 2) \) is not in \(D_1 \). Thus, \(Q_1 \) yields its own head, \(p(0, 2) \), and we must test that \(Q_2 \) does likewise on any database consisting of symbols 0, 1, and 2, that includes the two tuples of \(D_1 \) and does not include the tuple \(a(0, 2) \), the frozen negative subgoal of \(Q_1 \). If we use the substitution \(A \to 0, B \to 1, C \to 2, \) and \(D \to 2 \), then the positive subgoals become true for any such superset of \(D_1 \). The negative subgoal becomes \text{NOT } a(0, 2)\, and we have explicitly excluded \(a(0, 2) \) from any of these databases. We conclude that the Levy-Sagiv test holds for case (1).

Now consider case (2), where \(X \) and \(Y \) are equated and \(Z \) is different. We have chosen to use 0 for \(X \) and \(Y \); 1 for \(Z \). Then the canonical database for this case is \(D_2 \), consisting of the frozen positive subgoals \(a(0, 0) \) and \(a(0, 1) \). For this substitution, the negative subgoal of \(Q_1 \) becomes \text{NOT } a(0, 1)\). Since \(a(0, 1) \) is in \(D_2 \), this subgoal is false. Thus, for this substitution of constants for variables in \(Q_1 \), we do not even derive the head of \(Q_1 \). We need check no further in this case; the test is satisfied.
The three remaining cases must be checked as well. However, as indicated in Fig. 1, in each case either both CQ’s yield the frozen head of Q_1 or Q_1 does not yield its own frozen head. Thus, the test is completely satisfied, and we conclude $Q_1 \subseteq Q_2$.

1.3 CQ’s With Arithmetic Comparisons

Another important extension of CQ-containment theory is the inclusion of arithmetic comparisons as subgoals. In this regard we must consider the set of values in the database as belonging to a totally ordered set, e.g., the integers or reals. When we consider possible assignments of integer constants to the variables of conjunctive query Q_1, we may use consecutive integers, starting at 0, but now we must consider not only partitions of variables into sets of equal value, but among the blocks of the partition, we must consider the relative order of their values. The canonical database is constructed from those subgoals that have nonnegated, uninterpreted predicates only, not those with a negation or a comparison operator.

If there are negated subgoals, then we must also consider certain supersets of the canonical databases, as we did in Section 1.2. But if there are no negated subgoals, then the canonical databases alone suffice.

Example 5. Now consider the following two conjunctive queries, each of which refers to a graph in which nodes are assumed to be integers.

$$Q_1: p(X, Z) :: a(X, Y) \land a(Y, Z) \land X < Y.$$
$$Q_2: p(A, C) :: a(A, B) \land a(B, C) \land A < C.$$

Both ask for paths of length 2. But Q_1 requires that the first node be numerically less than the second, while Q_2 requires that the first node be numerically less than the third.

The number of different canonical databases is 13. We must consider the five different partitions of $\{X, Y, Z\}$, as we did in Fig. 1. However, we also have to order the blocks of each partition. For partition (1) of Fig. 1, where each variable is separate, we have 6 possible orders of the blocks. For partitions (2) through (4), where there are only two blocks, we have 2 different orders. Finally, for partition (5), with only one block, there is one order.

In this example, the containment test fails. We have only to find one of the 13 cases to show failure. For instance, consider $X = Z = 0$ and $Y = 1$. The canonical database D for this case is $\{a(0, 1), a(1, 0)\}$, and since $X < Y$, the body of Q_1 is true. Thus, $Q_2(D)$ must include the frozen head of Q_1, $p(0, 0)$. However, no assignment of values to A, B, and C makes all three subgoals of Q_2 true, when D is the database. That is, in order to make subgoals $a(A, B)$ and $a(B, C)$ both true for D, we surely must use 0 or 1 for all of A, B, and C. Then to make $A < C$ true, we must have $A = 0$ and $C = 1$. But then, whether B is 0 or 1 we shall have in Q_2 a subgoal $a(0, 0)$ or $a(1, 1)$, neither of which is in D. Thus, D is a counterexample to $Q_1 \subseteq Q_2$.

The containment test for CQ’s with arithmetic is from [Klug88], and [vdM92] shows that the problem of testing containment for CQ’s with arithmetic comparisons is complete for P^P, at least in the case of a dense domain such as the reals. [LS93] actually includes arithmetic comparisons in their work on negation, and we should note that the above technique works even if there are negated subgoals as well as arithmetic comparisons. There is a more general approach that works for any interpreted predicates, not just a predicate like $<$ or \leq that forms a total order; it appears in [ZO93]. However, this technique does not include CQ’s with negated subgoals.

1.4 Datalog Programs

Let us now return to the original model of rules, excluding negated subgoals and arithmetic comparisons. However, we shall now consider collections of rules, which we call a Datalog program. Such collections of rules have a natural, least-fixedpoint interpretation, where we start by assuming the IDB predicates have empty relations. We then use the rules to infer new IDB facts, until no more facts can be inferred. More on the semantics of Datalog, including efficient algorithms for evaluating the IDB predicates, can be found in [UL88], [UL89]. While we shall not discuss Datalog with negated subgoals here, because the meaning is debatable in some cases, the principal ideas are surveyed in [UL94]. Here is an example of a Datalog program and its semantics.

Example 6. Consider the three rules:

1) $p(X,Z) :- q(X,Y) \& b(Y,Z)$.
2) $q(X,Y) :- a(X,Y)$.
3) $q(X,Z) :- a(X,Y) \& p(Y,Z)$.

Intuitively, think of a graph with two kinds of arcs: “a-arcs” and “b-arcs.” Then p and q represent certain kinds of paths. Rule (1) says that a q-path followed by a b-arc is a p-path. Rule (2) says that a single a-arc is a q-path, while rule (3) says that a-arcs followed by p-paths are also q-paths. It may not be obvious what is going on, but one can prove by an easy induction that the p-paths consist of some number $n \geq 1$ of a-arcs followed by an equal number of b-arcs. A q-path is the same, except it has one fewer b-arc.

To get a feel for why this claim holds, consider a particular graph G described by the a and b EDB predicates. Then rule (2) says all the paths a are in the relation for q. We can therefore use rule (1) to infer that any path of the form ab is in the relation for p; more precisely, if there is a path from node X to node Z that follows an a-arc and then a b-arc, $p(X, Z)$ is true. Next, rule (3) tells us that any path of the form aab is a q-path; rule (1) says paths of the form $aabb$ are p-paths, and so on.

Containment questions involving Datalog programs are often harder than for CQ’s. [Shm87] shows that containment of Datalog programs is undecidable, while [CV92] shows that containment of a Datalog program in a CQ is doubly
exponential. However, the important case for purposes of information integration is the containment of a CQ in a Datalog program, and this question turns out to be no more complex than containment of CQ’s ([R89]).

To test whether CQ Q is contained in Datalog program P, we “freeze” the body of Q, just as we did in Section 1.1, to make a canonical database D. We then see if $P(D)$ contains the frozen head of Q. The only significant difference between containment in a CQ and containment in a Datalog program is that in the latter case we must keep applying the rules until either the head is derived, or no more IDB facts can be inferred.

Example 7. Consider the Datalog program from Example 6, which we shall call P, and the CQ Q:

$$p(A, C) : - a(A, B) \& b(B, C).$$

Freezing the body of Q, we obtain the canonical database

$$D = \{a(0, 1), b(1, 2)\}.$$

Now, we apply P to D. Rule (2) lets us infer $q(0, 1)$ from $a(0, 1)$. Then, rule (1) lets us infer $p(0, 2)$ from $q(0, 1)$ and $b(1, 2)$. Since $p(0, 2)$ is the frozen head of Q, our test has concluded positively; $Q \subseteq P$.

2 Synthesizing Queries From Views

Query containment algorithms connect to information integration via a concept called “synthesizing queries from views.” The idea, originally studied by [YL87] and [C95], is suggested in Fig. 2. There are a number of “EDB” predicates, for which we use p’s in Fig. 2. These predicates, which are not truly EDB predicates since they usually don’t exist as physically stored relations, can be thought of as representing the basic concepts used in queries. There are also views, denoted by v’s in Fig. 2, that represent resources that the integrator uses internally to help answer queries. Each view has a definition in terms of the EDB predicates, and we suppose here that these definitions are conjunctive queries.

2.1 Solving Queries by Views

A query Q is expressed in terms of the EDB predicates, the p’s. Our problem is to find a “solution” S for the query Q. A solution is an expression (also a CQ in the figure) in terms of the views. In order to be a valid solution, when we replace the views in S by their definitions, we get an expansion query E, which must be equivalent to the original query Q. An alternative formulation of the query-synthesis problem is to ask for all solutions S whose expansion E is contained in Q (perhaps properly contained). “The solution” for Q is then the union of all these partial solutions.
Example 8. We shall consider an example that illustrates some technical points, but suffers in realism for the sake of these points. Let us suppose that there is a single EDB predicate \(p(X, Y) \) which we interpret to mean that \(Y \) is a parent of \(X \). Let there be two views, defined as follows:

\[
\begin{align*}
v_1(Y, Z) & :\ p(X, Y) \land p(Y, Z). \\
v_2(X, Z) & :\ p(X, Y) \land p(Y, Z).
\end{align*}
\]

Note that the views have the same body but different heads. The first view, \(v_1 \), actually produces a subset of the relation for \(p \) those child-parent pairs \((Y, Z)\) such that the child is also a parent of some individual \(X \). The second view, \(v_2 \), produces a straightforward grandparent relation from the parent relation.

Suppose that we want to query this information system for the great grandparents of a particular individual, whom we denote by the constant 0. This query is expressed in terms of the EDB predicate \(p \) by

\[
q(C) :\ p(0, A) \land p(A, B) \land p(B, C).
\]

Our problem is to find a CQ whose subgoals use only the predicates \(v_1 \) and \(v_2 \) and whose expansion is equivalent to the query above. A bit of thought tells us that

\[
s_1(C) :\ v_2(0, D) \land v_1(D, C).
\]

is a solution. That is, if we replace each of the subgoals of \(s_1 \) by the definition of the views (being careful to use unique variables in place of those variables that appear in the bodies of the view definitions but not in the heads of those definitions), we get the expansion:

\[
e_1(C) :\ p(0, E) \land p(E, D) \land p(F, D) \land p(D, C).
\]
We can use the CQ containment test in both directions to prove that $e_1 \equiv q$. Intuitively, the subgoal $p(F, D)$ in e_1 is superfluous, since every time there is binding for E and D that makes $p(E, D)$ true, we can bind F to the same value as E and make $p(F, D)$ true.

There are other solutions that, when expanded, are contained within q, but are not equivalent to it. Some examples are:

$$s_2(C) :- vi(0,D) \& vi2(D,C).$$
$$s_3(C) :- vi(0,D) \& vi(D,E) \& vi(E,C).$$
$$s_4(C) :- vi2(0,D) \& vi(D,C) \& vi2(C,E).$$

Solution s_2 is equivalent to q if individual 0 has a child in the database. Otherwise, 0 cannot appear as a first component in the relation for v_1, and the result of s_2 is empty. Thus, $s_2 \subseteq q$, but not conversely. Solution s_3 is actually equivalent to s_2, while s_4 gives those great grandchildren of individual 0 who are themselves grandchildren.

2.2 Minimal-Solution Theorems

It might appear from Example 8 that one can only guess potential solutions for a query and test them via CQ-containment tests. However, there are theorems that limit the search and show that the problem of expressing a query in terms of views, while NP-complete, is no worse than that. As discussed in Section 1.1, we expect that queries will be short, so NP-complete problems are unlikely to be a major bottleneck in practice.

The principal idea is that any view used in a solution must serve some function in the query; a view without a function may be deleted from the solution. For example, every subgoal of the query must be covered by some view. The question of when a view covers a query subgoal is a bit subtle, because two or more views may cover the same subgoal. For instance, consider Example 8, where both $p(E, D)$ and $p(F, D)$ from expansion e_1 “cover” $p(A, B)$ from the query. More precisely, A, E, and F may each represent a parent of individual 0, while B and D represent a parent of that parent. Note that $p(E, D)$ and $p(F, D)$ come from the expansion of $v_1(0, D)$ and $v_1(D, C)$, respectively, in solution s_1, so these two subgoals from different views each play the same role in the expansion.

Let us define a solution S for a query Q to be minimal if

1. $S \subseteq Q$.
2. There is no solution T for Q such that
 (a) $S \subseteq T \subseteq Q$, and
 (b) T has fewer subgoals than S.

Theorem 1. ([L*95]) If queries are CQ’s without negation, arithmetic comparisons, or constants in the body, then every minimal conjunctive-query solution for a query Q has no more subgoals (uses of views) than Q has subgoals.
Theorem 2. ([RSU95]) If queries are CQ’s without negation or arithmetic comparisons (but with constants in the body permitted, as in Example 8), then every minimal CQ-solution for a query Q has no more subgoals than the sum of the number of subgoals and number of variables in Q.

Both Theorems [L*95] and [RSU95] offer nondeterministic polynomial-time algorithms to find either
1. A single solution equivalent to the query Q, or
2. A set of solutions whose union is contained in Q and that contains any other solution that is contained in Q.
In each case, one searches “only” an exponential number (as a function of the length of Q) of minimal queries. If we are looking for one solution equivalent to Q, then we may stop if we find one, and we conclude there is none if we have searched all solutions of length up to the bound and found none. If we want all solutions contained in the query, then we search all up to the bound, taking those that are contained in Q.

3 Information-Integration Systems

Information integration has long been recognized as a central problem of modern database systems. While early databases were self-contained, it is now generally realized that there is great value in taking information from various sources and making them work together as a whole. Yet there are several difficult problems to be faced:
- “Legacy” databases cannot be altered just because we wish to support a new, integrating application above them.
- Databases that ostensibly deal with the same concepts may have different shades of meaning for the same term, or use different terms for the same concept.
- Information sources, such as those on the “web,” may have no fixed schema or a time-varying schema.

A common integration architecture is shown in Fig. 3. Several sources are wrapped by software that translates between the source’s local language, model, and concepts and the global concepts shared by some or all of the sources. System components, here called mediators ([Wie92]), obtain information from one or more components below them, which may be wrapped sources or other mediators. Mediators also provide information to components above them and to external users of the system.

In a sense, a mediator is a view of the data found in one or more sources. Data does not exist at the mediator, but one may query the mediator as if it were stored data; it is the job of the mediator to go to its sources and find the answer to the query.

Today, the components labeled “mediator” in Fig. 3 are unlikely to be true mediators, but rather data warehouses. If a mediator is like a view, then a warehouse is like a materialized view. That is, the warehouse holds data that is constructed from the data at the sources. The warehouse is queried directly, with
no involvement by the sources. There are numerous problems associated with the design and implementation of warehouses (see [Wid95], e.g.), not the least of which is that it is difficult and/or expensive to keep the warehouse up-to-date, as the underlying data changes.

There are, however, several research projects developing true mediator capabilities, and in this section we shall introduce two of them:

1. Information Manifold ([K*95], [L*96a], [L*96b]), a project of AT&T Laboratories.
2. Tsimmis ([T96], [P96], [P*95a], [GM*95], [P*95b]), a project at Stanford University.

Both systems use logic-based technology, and while neither is based on Datalog per se, the operation of each can be translated into Datalog.

3.1 Information Manifold

Information Manifold (IM) is based on a dialect of description logic called CARIN ([LR96]). Description logic is a fragment of first-order logic that can almost be thought of as nonrecursive Datalog with IDB predicates restricted to be unary, although there are certain capabilities of description logic that are beyond what Datalog provides ([Bor96]). Here, we shall use Datalog in examples of the architecture of IM.
The architecture of IM is essentially that described in Section 2. The following points characterize IM in these terms:

- An IM application has a collection of "global" predicates in terms of which all queries are expressed.
- Each information source is associated with one or more views. Views are also defined in terms of the global predicates.
- However, the definition of a view should not be given the usual interpretation of "this source provides all facts derivable from its definition and the global predicates." Rather, the intension is that the view provides some of those facts.
- The solution to a query is the union of all minimal CQ's (over the views) contained in the query. Note that there could be other solutions to the query in sources not available to this IM application, but the minimal solutions provide all the query answers that are accessible to IM.
- Also associated with a source are zero or more constraints. A constraint is a guarantee that certain facts that might be present in the view will in truth not appear there. For example, a source might supply a parent-child predicate as its view, and a constraint might state that the only pairs supplied will have female children born after 1970.

Example 9. Let us consider an integrated information system about employees of a company. This example too is somewhat contrived for the sake of some technical points. In this system, the global predicates are:

1. emp(E), meaning E is an employee.
2. phone(E, P), meaning P is E's phone.
3. office(E, O), meaning O is E's office.
4. mgr(E, M), meaning M is E's manager.
5. dept(E, D), meaning D is E's department.

There are three sources, each of which provides one view. The definitions of the views are:

\[v1(E,P,M) := \text{emp}(E) \& \text{phone}(E,P) \& \text{mgr}(E,M). \]
\[v2(E,O,D) := \text{emp}(E) \& \text{office}(E,O) \& \text{dept}(E,D). \]
\[v3(E,P) := \text{emp}(E) \& \text{phone}(E,P) \& \text{dept}(E,\text{toy}). \]

That is, the first source, which supports view \(v_1 \), gives information about employees, their phones and managers. The second source supports view \(v_2 \) and gives information about the offices and departments of employees. The third source supports view \(v_3 \) and provides the phones of employees, but only for employees in the Toy Department. Notice that the constraint department = "Toy" is enforced by the subgoal \(\text{dept}(E,\text{toy}) \) in the definition of \(v_3 \). This constraint would be important if we asked a query about employees known not to be in the Toy Department; then we would know that \(v_3 \) does not appear in any minimal solution.

Also note that there is no reason to believe the phone information provided by \(v_1 \) and \(v_3 \) is consistent. Further, it is entirely possible that the information is
incomplete: only one of these sources provides phone information, even though
the employee is in the Toy Department. In fact, perhaps neither source tells us
Sally’s phone, even though she has a phone.

Suppose this system is asked a query, “what are Sally’s phone and office?”
We can express this query in terms of the global predicates as:

\[q_1(P, O) \Leftrightarrow \text{phone(sally, P) & office(sally, O)}. \]

There are two minimal solutions to this query. Both use \(v_2 \) to get Sally’s office,
while the two solutions differ on whether \(v_1 \) or \(v_3 \) is used to get the phone. That
is, the full answer to query \(q_1 \) is the union of the CQ’s:

\[
\text{answer}(P, O) \Leftrightarrow v_1(\text{salary, P, M}) \land v_2(\text{salary, O, D}). \\
\text{answer}(P, O) \Leftrightarrow v_3(\text{salary, P}) \land v_2(\text{salary, O, D}).
\]

Note that the expansions of these solutions:

\[
\text{answer}(P, O) \Leftrightarrow \text{emp(salary) & phone(salary, P) & mgr(salary, M) &} \\
\text{emp(salary) & office(salary, O) & dept(salary, D)}.
\]

\[
\text{answer}(P, O) \Leftrightarrow \text{emp(salary) & phone(salary, P) & dept(salary, toy) &} \\
\text{emp(salary) & office(salary, O) & dept(salary, D)}.
\]

are not equivalent to \(q_1 \); they are the CQ’s that come closest to \(q_1 \) while still
being contained in \(q_1 \).

3.2 Tsimmis

Tsimmis, which stands for “The Stanford-IBM Manager of Multiple Information Sources,” is a DARPA-funded, joint project of the Stanford database group
and the IBM/Almaden database research group, although the IBM contingent
has recently begun work on their own information integration project called
Garlic ([G96]). Tsimmis follows the mediator architecture of Fig. 3, allowing us
to create a hierarchy of wrappers and mediators that talk to one another.
Tsimmis components talk among themselves using a data model called OEM
(Object-Exchange Model) and a query language called MSL (Mediator Specification Language). MSL is also used to describe mediators and wrappers at a
high level, and these components can be generated automatically from the MSL
specification.

OEM. The OEM model ([P*95a]) is “object-oriented,” and data is assumed to
be organized into objects. An OEM object consists of:

1. A label, roughly the name of the object’s class.
2. A type for the value of the object. The type is either an atomic type: integer,
 string, Java script, and so on, or it is the type “set of OEM objects.”
3. A value, either an actual value if the object is atomic, or a set of OEM objects.
4. An (optional) object-ID.

Example 10. Figure 4 suggests an OEM object with label \texttt{library}, whose value is a set of objects representing the documents in the library. We also see one member object, with label \texttt{book}. The value of this object is a set, and we have shown two members of that set. Both are atomic objects, one labeled \texttt{title} and having value \texttt{Jurassic Park}, and the other labeled \texttt{author} with value \texttt{Crichton}.

MSL. MSL statements are logical rules, but the rules are not exactly Datalog. Rather, MSL uses a form of object-logic, in which

- Labels and values are connected using triangular brackets, \langle \ldots \rangle.
- It is also possible to include an object-ID inside triangular brackets as an optional first component.
- Object-ID’s may be constructed using function symbols, as in HiLog ([C*89]).
- Some (not necessarily all) members of a set of objects may be described by enclosing them in curly braces \{ \ldots \}.

Example 11. Let us reconsider Example 9, where we had three sources. Source 1 produces employee-phone-manager information, Source 2 produces employee-office-department information, and Source 3 produces employee-phone information for members of the Toy Department. Each of these sources will be assumed to export appropriate OEM objects. For example, Source 1 exports objects with atomic subobjects labeled \texttt{name}, \texttt{phone}, and \texttt{mgr}. We wish to describe, using
MSL rules, a mediator named med that uses these three sources and exports two types of objects:
- Employee-phone-office objects with label epe.
- Employee-department-manager objects with label edm.

Each object of these types will have subobjects with the appropriate labels. Figure 5 shows the MSL rules that describe these objects exported by med.

1) \(<f(E) \text{ epe } \{\text{name } E, \text{ phone } P\}> \text{ med } : -
 \text{emp } \{\text{name } E, \text{ phone } P\} > \text{ source1}
2) \(<f(E) \text{ epe } \{\text{name } E, \text{ phone } P\}> \text{ med } : -
 \text{emp } \{\text{name } E, \text{ phone } P\} > \text{ source3}
3) \(<f(E) \text{ epe } \{\text{name } E, \text{ office } D\}> \text{ med } : -
 \text{emp } \{\text{name } E, \text{ office } D\} > \text{ source2}
4) \(<\text{edm } \{\text{name } E, \text{ dept } D, \text{ mgr } M\}> \text{ med } : -
 \text{emp } \{\text{name } E, \text{ mgr } M\} > \text{ source1 AND}
 \text{emp } \{\text{name } E, \text{ dept } D\} > \text{ source2}

Fig. 5. An MSL mediator description

In this example, we have made the (unrealistic) assumption that employee names are unique. Thus, as we assemble epe objects for an employee named E, we use the object-ID f(E), expecting that this ID is unique. Rule (1) says that whenever there is an emp object at Source 1 with a name subobject having value E and a phone subobject with value P, we “create” at the mediator med an object whose ID is f(E) and whose label is epe. This object has a subobject with label name and value E and a second subobject with label phone and value P. Rules (2) and (3) are similar; rule (2) takes employee/phone information from Source 3, while rule (3) takes employee/office information from Source 2. Three important points are:
- Because the object-ID is specified in rules (1) through (3), whenever information about the same employee E is found in two or more sources, the subobjects implied by the heads of these rules will be combined into the value of the same object — the one with ID f(E). Thus, it will be typical that employee objects will have three subobjects, with labels name, phone, and office. They could even have more than three subobjects. For example, Sources 1 and 3 could give different phones, so two subobjects labeled phone would appear. A single source could also have several phones or offices for employee E, and all of these would appear as subobjects at the mediator.
- The fact that rule (1) only mentions name and phone subobjects at Source 1 doesn’t mean it will fail if there are more subobjects, e.g., a manager subobject. MSL only mentions subobjects it needs, allowing any other subobjects
to be present. There is even a way (the rest-variable) to refer to “whatever other subobjects are present.”

- There is no assumption that variables like E or P are atomic. They might turn out to have sets of objects as values, and in fact different objects at the sources may have different types for values having the same label. For instance, some employees may have strings for names, while others have objects with first- and last-name subobjects.

Rule (4) in Fig. 5 follows a somewhat different philosophy in constructing the edm objects at med. Here, an object is produced only if we are successful in finding, for employee E, a department at Source 2 and a manager at Source 1. If either is missing, then there is no object for employee E at med. In contrast, rules (1) through (3) allow there to be an epo object for E if any one of the three sources mentions E. Note also that the object-ID component in the constructed sources is optional, and in rule (4) there is no need to specify an ID. Thus, the head of rule (4) has only label and value components, while the other rules have 3-component heads.

Converting MSL to Datalog. There is a way to convert MSL into completely equivalent Datalog ([P96]). We shall not go into this process, but rather give a simplification that will help us compare IM and Tsimmis.

Example 12. The following rules capture much of the content of the MSL rules in Fig. 5:

\[\text{epo}(E,P,O) := \text{v1}(E,P,M) \& \text{v2}(E,O,D). \]
\[\text{edm}(E,M,O) := \text{v1}(E,P,M) \& \text{v2}(E,O,D). \]

Recall that \(v_1 \), \(v_2 \), and \(v_3 \) are the three views that we introduced in Example 9. They correspond to the sources 1, 2, and 3 in Example 11.

There is one important way that the rules above differ from the MSL rules in Fig. 5. We only get epo facts for employees such that among the three views we find both a phone and office for that employee. In contrast, as we mentioned in Example 11, the MSL rules can yield a phone without an office or vice-versa. This capability of MSL is an essential contribution to dealing with heterogeneous, often incomplete information sources.

Querying Tsimmis Mediators. When we query an MSL mediator, we are effectively querying the objects exported by the mediator. There is no notion of “global” predicates as there is in IM. Rather, we must refer to the labels (equivalent to predicates) that the mediator exports. Completion of our running example will illustrate the distinction between the Tsimmis and IM approaches.

Example 13. Again let us ask “what are Sally’s phone and office?” This time, however, we ask it of the mediator med, whose exported objects we have represented in Datalog by the rules of Example 12. The appropriate query is thus:
answer(P,0) :- epo(sally,P,0).

MSL-generated mediators answer their queries by expanding the rules by which the mediator is defined, in order to get the same query in terms of information at the sources. In our simple example, we would replace the epo subgoal in the query by the bodies of the two rules that define epo at med, thus obtaining:

answer(P,0) :- v1(sally,P,M) & v2(sally,O,D).
answer(P,0) :- v3(sally,P) & v2(sally,O,D).

Notice that this expansion is identical to what IM obtained for the same query.

3.3 Comparing the IM and Tsimmis Query Processors

We should not suppose from Example 13 that the result of “equivalent” IM and Tsimmis queries are always the same, even after accounting for the difference in the underlying logics. The processes of query translation are rather different.

- IM uses the query synthesis strategy outlined in Section 2.
- IM queries are in terms of global predicates, which are translated into views.
- Tsimmis queries are in terms of predicates synthesized at a mediator. These concepts, in turn, are built from views in the IM sense, exported by the sources.
- Tsimmis uses a strategy of rule expansion to answer queries. Although the expansion can result in an exponential number of terms, the flavor of the search is different from IM’s. In Tsimmis we can expand each subgoal of the query independently, using every rule whose head unifies with the subgoal.

Example 14. The following is an example of how the two systems can differ. In this example, Tsimmis appears to flounder, but we should emphasize that it is an atypical example, contrived for the sake of illustration.

Suppose we wanted to know Sally’s office and department. That is:

q2(O,D) :- office(sally,O) & dept(sally,D).

Using the views of Example 9, IM would find that the only minimal solution to the query q2 is

answer(O,D) :- v2(sally,O,D).

However, using the Tsimmis mediator med of Example 11, we can only express our query as:

q3(O,D) :- epo(sally,P,0) & edm(sally,D,M).

The reason for this awkwardness is that each mediator exports a specific collection of objects. We do not have the freedom to penetrate, in our query, to the terms used by the mediator’s sources.

The mediator med would process query q3 by expanding each subgoal. The result would be the pair of rules:
answer(0,D) :- v1(sally,P1,M1) & v2(sally,0,D) &
 v1(sally,P2,M2) & v2(sally,0,D).
answer(0,D) :- v3(sally,P1) & v2(sally,0,D) &
 v1(sally,P2,M) & v2(sally,0,D).

Of course, the MSL optimizer will eliminate redundant terms and simplify this solution. However, it cannot completely eliminate the subgoals using the irrelevant views \(v_1 \) and \(v_3 \). As a result, it produces an empty answer in the case that we do not know a phone or manager for Sally.

Let us again emphasize that the apparent failure of Tsimm is in Example 14 is due only to the fact that we contrived the mediator to export inconvenient objects. The motivation for the design of Tsimm is that the mediators it creates may perform some very complex processing of source data to produce its exported objects. It may not be feasible to define or create objects for every conceivable query. In comparison, IM is limited in the way it can combine its sources, since it must rely on the particular search algorithm of Section 2 to combine sources.

3.4 Further Comparisons of IM and Tsimm

In addition to the differences in query processing discussed in Section 3.3, there are a number of other ways in which IM and Tsimm differ.

Levels of Mediation. IM is designed to have two levels: the sources and the “global mediator.” In contrast, Tsimm assumes that there is an indefinite number of levels, as the output of one mediator can be a source for a higher-level mediator. Of course, it would in principle be possible for one IM application to be a source for another. However, then we would have to wrap the first application, defining for it a fixed set of views that it exported. We thus might face the same sort of awkwardness that we explored in Example 14 in the context of Tsimm.

Adding Sources. IM makes it quite convenient to add new sources. One must write a wrapper for the sources and define its views and constraints in terms of the global concepts. However, no change to the query-processing algorithm is needed. The new views will be used whenever they are appropriate for the query. In contrast, new Tsimm sources not only must be wrapped, but the mediators that use them have to be redefined and their MSL definitions recompiled. The administrator of the system must figure out whether and how to use the new sources.

Semistructured Data. As we have mentioned, Tsimm is supports the notion that data does not have a fixed or uniform schema; we call such data semistructured. Objects with the same label, say employee, may have different sets of
information available, and even the same information may appear with different structures in different objects. For example, some employees may be retired and have no salary subobject. Others may have an integer salary. Others may have a structured salary including base, weekly commissions, and so on. The MSL language has been designed to allow the mediator-implementor to deal with the lack of schema. The reader will find more on the important issue of handling semistructured data in [A97].

Constraints. Only IM has an explicit mechanism for describing special properties of the information that a particular source will supply and using that information in its query-processing algorithm.

Automatic Generation of Components. Tsimmis has stressed the automatic generation of both wrappers ([P95b]) and mediators ([P96]). In a sense, IM has no need for automatic generation of mediators, since each application has one “mediator” and the query-processing algorithm it uses is the same as that of any other IM application. Tsimmis wrapper-generation technology could be used to wrap IM sources, although the difference in the models and languages (OEM/MSL versus Description Logic) makes direct adaptation impossible.

3.5 Extensions of the Query/View Model of Mediation

Both IM and Tsimmis have concentrated on conjunctive queries as the principal model of both queries and views. However, there has been some exploration in both projects of the possibility of using more powerful languages for defining views. The natural “next step” is to use recursive Datalog programs to generate infinite families of views. While describing a simple source by a finite set of views or rules is adequate, sources that support a rich query language (e.g., an SQL database) are better described by infinite families of queries.

Example 15. Suppose the source is an on-line bibliography that allows queries in which one or more properties are specified. We might describe the source by the recursive program of Fig. 6.

```prolog
answer(X) :- book(X) and QUALS(X).

QUALS(X) :- QUALS(X) & Q(X).
QUALS(X) :- Q(X).

Q(X) :- property(X, $pname, $value).
```

Fig. 6. A recursive program generating views
There are several things we must understand about the notation in Fig. 6.
First, predicates QUALS and Q are expected to be expanded in all possible
ways, generating an infinite set of conjunctive queries, each of the form

\[
\text{answer}(X) :- \text{book}(X) \& \text{property()} \& \\
\text{property()} \& \ldots \& \text{property()}
\]

That is, each query asks for books X that satisfy certain properties.

The variables $\$\text{name}$ and $\$\text{value}$ are parameters that are intended to be
filled in for each property, allowing the CQ to match queries in which particular
properties are required to have specific values. A typical query is:

\[
\text{query}(X) :- \text{book}(X) \& \text{property}(X, \text{author}, \text{crichton}) \& \\
\text{property}(X, \text{subject}, \text{dinosaurs}).
\]

The idea has been explored in the context of Tsimmis in [P*95b]. It also has
been proposed as an extension to IM in [LRU96]. In each case the satisfactory
incorporation of recursively generated, infinite view sets requires extending the
previously known algorithms for containment of conjunctive queries and Datalog
programs.

4 Conclusions

Both IM and Tsimmis offer interesting approaches to the difficult problems of
information integration. Moreover, they both draw upon similar, fairly ancient
ideas from database logic, such as conjunctive query containment, as well as
new ideas in database theory. They differ in a number of ways, including the
underlying logic, the approach to semistructured data, and the query processing
algorithm. Each represents an exciting direction for further research in database
systems and for the creation of a new class of information-processing tools.

Acknowledgements

Comments by Pierre Huy, Phokion Kolaitis, Alon Levy, Yannis Papakonstantinou,
Anand Rajaraman, and Shu Ky Sagiv are greatly appreciated.

References

[A97] Abiteboul, S. Querying semistructured data. These proceedings.
[Bor96] Borgida, A. On the relative expressiveness of description logics and predicate
[CM77] Chandra, A. K. and P. M. Merlin. Optimal implementation of conjunctive
queries in relational databases. Proc. Ninth Annual ACM Symposium on the
[C'*95] Chaudhuri, S., R. Krishnamurthy, S. Potamianos, and K. Shim. Optimizing
queries with materialized views. Intl. Conf. on Data Engineering, 1995.

